
9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 1 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

MA 506 Probability and Statistical
Inference

Lecture 2: Python basics

1 Python data types
This notebook discusses the various data types available by default in Python. Additional
data types like array and dataframes are possible from additional packages like Numpy and
Pandas etc.

1.1: String data types

String is defined in double or single qoutes in python

In [135]:

In [1]:

In [3]:

Variable s has value: Hello World
Type of s is: <class 'str'>

Out[1]: 'This is a string'

Out[3]: 'This is a string'

s = 'Hello World'
print(f'Variable s has value: {s}')
print(f'Type of s is: {type(s)}') ## type(s) gives the class to which s belongs

s = 'This is a string'
s

s = "This is a string"
s

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 2 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [4]:

In [5]:

In [6]:

In [9]:

In []:

In []:

print function expects string as arguments. print('Variable s has value: '+s) basically
concatenates two strings using the + operator and prints the resultant string. For example

In [136]:

Same example with double quotes

In [137]:

 Input In [4]
 s = 'Albert's'
 ^
SyntaxError: invalid syntax

Out[5]: "Albert's"

Out[6]: 'This is Wednesday'

Out[9]: 'This is'

Out[136]: 'this is'

Variable s has value: Hello World
Type of s is: <class 'str'>

s = 'Albert's'
s

s = "Albert's"
s

s1 = 'This is'
s2 = ' Wednesday'
s1+s2

s1

'this'+' '+'is'

s = "Hello World"
print(f'Variable s has value: {s}')
print(f'Type of s is: {type(s)}')

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 3 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

Single and double quotes

Suppose we want to print the string: Sam's car

Then double quotes is required to define this string so that python is able to differentiate
between outer quotes and ' in Sam's car. Hence following would give an error

In [138]:

This is the correct way to do it.

In [139]:

One more example

In [140]:

In []:

1.2: Numerical Types

Here we show how to define different kind of numerical data types

In [13]:

 Input In [138]
 s = 'Sam's car'
 ^
SyntaxError: invalid syntax

Sam's car

"Hi"

Out[13]: float

s = 'Sam's car'
print(s)

s = "Sam's car"
print(s)

print('"Hi"')

a = 1.5
type(a)

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 4 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [14]:

In [15]:

In [16]:

Casting float as integer removes the decimal part

In [16]:

In [17]:

In []:

We can also do complex data types

In [18]:

Separating the real and imaginary components

In [21]:

Out[14]: float

Out[15]: float

1.0

Out[16]: 2

Out[17]: 3

Out[18]: complex

The real part is: 2.0
The imaginary part is: 1.1

b = 1.5
type(b)

type(a+b)

a1 = float(a)
print(a1)

a = 2.7
b = int(a)
b

a = 2.7
b = round(a)
b

c = complex(2+1.1j)
type(c)

print(f'The real part is: {c.real}')
print(f'The imaginary part is: {c.imag}')

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 5 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

1.3: Sequence Types

Defining data objects in python which are structured as a collection and have the notion of
indexing

In [19]:

In []:

Many other operations like appending is possible for the list object

In [20]:

In [21]:

In [22]:

In [24]:

In [26]:

In [27]:

Out[19]: list

Out[20]: [1, 2, 3, 4, 5]

Out[21]: [1, 2, 3, 4, 5, 'Tim']

Out[22]: [1, 2, 3, 4, 5, 'Tim', [1, 2]]

Out[24]: 1

Out[26]: [1, 2, 3, 4, 5, 'Tim', [1, 2]]

Out[27]: [1, 3, 4, 5, 'Tim', [1, 2]]

a = [1,2,3,4]
type(a)

a.append(5)
a

a.append('Tim')
a

a.append([1,2])
a

a[6][0]

a

a.remove(2)
a

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 6 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [28]:

In [30]:

For accessing elements in the list:

1. 0 index denotes the first element in the list. Indexing in python always starts from 0
(unless specified otherwise)

2. -1 is the index of the last element, -2 is the index of the second last element and it goes
like that from the back

In [28]:

Like list, we also have a data object called as tuple. It uses () instead of [] (as in list)

In [29]:

Re-assigning elements in the list and tuple object.

With list it works fine when we try to assign the element at index 0 to 9. Right now it is 1 (for
list a)

In [31]:

In [31]:

However, tuple is an immutable object, so reassigning values is not possible with the tuple
object

Out[28]: [1, 3, 4, 5, 'Tim', [1, 2]]

Out[30]: 'Tim'

1 4 5 5

Out[29]: tuple

Out[31]: [1, 3, 4, 5, 5]

Out[31]: [9, 3, 4, 5, 5]

a

a[-2]

print(a[0],a[2],a[-1],a[-2])

b = (1,2,3)
type(b)

a = [1, 3, 4, 5, 5]
a

a[0] = 9
a

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 7 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [34]:

In [35]:

In [36]:

Using range function to generate the sequence

In [33]:

Testing various ways of generating a list object. For better understanding, try to think why
these commands lead to the following output

TypeError Traceback (most recent call
last)
Input In [34], in <cell line: 2>()
 1 b = (1, 3, 4, 5, 5)
----> 2 b[0] = 9
 3 b

TypeError: 'tuple' object does not support item assignment

Out[35]: [1, 3, 4, 5, 5]

Out[36]: range(0, 10)

Out[33]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

b = (1, 3, 4, 5, 5)
b[0] = 9
b

c = list(b)
c

range(10)

list(range(10))

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 8 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [34]:

In [37]:

In [38]:

In [39]:

In []:

Another way of generating a list using range and using a for loop to iterate over the range
object

In [35]:

For example we can use this method to compute a list of log of number from 1 to 9. Here I
am using the numpy package as numpy includes the log functionality

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[]
[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7]
[-2, -1]

Out[37]: [-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Out[38]: [0, 1]

Out[39]: [-2, -1, 0, 1, 2, 3, 4]

Out[35]: [2, 3, 4, 5, 6, 7, 8, 9]

c1 = list(range(10));print(c1)
c2 = list(range(0,10));print(c2)
c3 = list(range(1,10));print(c3)
c4 = list(range(10,20));print(c4)
c5 = list(range(10,5));print(c5)
c6 = list(range(-2,10));print(c6)
c7 = list(range(-2,10))[2:10];print(c7)
c8 = list(range(-2,10))[:-10];print(c8)

list(range(-2,10))

list(range(-2,10))[2:4]

list(range(-2,10))[:-5]

d = [i for i in range(2,10)]
d

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 9 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [36]:

In []:

1.4: Mapping type

These kind of objects basically have a key value pair. For example the dictionary object in
python

In [42]:

In [44]:

Out[36]: [0.8414709848078965,
 0.9092974268256817,
 0.1411200080598672,
 -0.7568024953079282,
 -0.9589242746631385,
 -0.27941549819892586,
 0.6569865987187891,
 0.9893582466233818,
 0.4121184852417566]

{'Tom': [1, 2, 3], 'Sam': (5, 6, 7), 'Eric': [0, 1, 2, 3, 4, 5, 6, 7,
8, 9], 1: [1, 2]}

Out[42]: ({'Tom': [1, 2, 3],
 'Sam': (5, 6, 7),
 'Eric': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 1: [1, 2]},
 'listt')

x

import numpy as np
d = [np.sin(i) for i in np.arange(1,10)]
d

Dict = {
 'Tom':[1,2,3],
 'Sam':(5,6,7),
 'Eric': list(range(10)),
 1:[1,2]

}
print(Dict)
a = 'listt'

x = 3
print('x')

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 10 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [45]:

In [46]:

In [51]:

In [48]:

In [52]:

In [53]:

Here for example 'Tom' would be a key and [1,2,3] would be an object. Please note we have
used a mixture of strings and an integer as key here. This is valid for dictionaries

We cannot use indexing here because dictionary is just a collection of key value mapping
pairs

In [55]:

For accessing the elements we have to index the dictionary object with a key value

In [39]:

In [40]:

3

This is: 3

This is: 1.23

Out[53]: {'Tom': [1, 2, 3],
 'Sam': (5, 6, 7),
 'Eric': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 1: [1, 2]}

Out[55]: [1, 2, 3]

Out[39]: [1, 2, 3]

Out[40]: [1, 2]

print(x)

print(f'This is: {x}')

a = 1.234555

import numpy as np

print(f'This is: {np.round(a,2)}')

Dict

Dict['Tom']

Dict['Tom']

Dict[1]

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 11 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

1.5. Set types

Set is again a collection. Here also we dont usually have indexing. Uses {} to define

In [56]:

In [57]:

Editing the set object is possible. For example adding one more integer to the object a

In [56]:

We can generate some sort of ordering from a set by using other functions like

In [57]:

frozensets are immutable analogs to sets

In [59]:

Out[56]: set

TypeError Traceback (most recent call
last)
Input In [57], in <cell line: 1>()
----> 1 a[0]

TypeError: 'set' object is not subscriptable

{1, 2, 3, 10, 11}

[1, 2, 3, 10, 11]

Out[59]: frozenset

a = {10,1,2,3,3}
type(a)

a[0]

a.add(11)
print(a)

print(sorted(a)) ## gives ascending order

b = frozenset(a)
type(b)

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 12 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [60]:

In []:

In [61]:

In [62]:

In [63]:

In []:

In [69]:

In []:

1.6. Boolean Types

This type of variable only allows two states: True or False

Out[60]: frozenset({1, 2, 3, 10})

AttributeError Traceback (most recent call
last)
Input In [61], in <cell line: 1>()
----> 1 b.add(10)
 2 print(b)

AttributeError: 'frozenset' object has no attribute 'add'

Out[62]: {1, 2, 3, 10}

Out[63]: {1, 2, 3, 4, 5, 46}

Out[69]: False

b

b.add(10)
print(b)

a = {10,1,2,3,3}
a

a = [1,2,3,4,5,4,4,4,46,3,5]
set(a)

bool(int('0'))

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 13 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [60]:

In [61]:

An int, float or complex number set to zero returns False. An integer, float or complex
number set to any other number, positive or negative, returns True.

In [62]:

In [63]:

In []:

2. Control Flow
Here we will discuss ways to reorder the the default execution ordering

2.1 Conditional Statements

In [72]:

In [73]:

Out[60]: True

True True True False

True
False
False

False, True, False

You are good in math

a = bool(-2)
a

print(bool(100),bool(10),bool(-30),bool(0))

print(bool(complex(10j)))
print(bool(0))
print(bool(complex(0+0j)))

print(str(1>3)+', '+str(1<3)+', '+str(1==3))

if 5<6:
 print('You are good in math')

if 5>6:
 print('You are good in math')

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 14 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [74]:

In [75]:

2.2 Loops

1. For loops

In [79]:

In [78]:

In [72]:

Sorry you need to improve

You are good but need to improve

10
8
6
4
2

1
2
3

if 5>6:
 print('You are good in math')
else:
 print('Sorry you need to improve')

if 5>6:
 print('You are good in math')
elif 0<1:
 print('You are good but need to improve')
else:
 print('You need to improve')

for i in range(10,1,-2):
 print(i)

for j in [1,2,3]:
 print(j)

dictt = {
 2:'I',
 0:'Hi',
 4:'Prashant',
 3:'am',
}

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 15 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [73]:

In [74]:

In []:

2. While loop

In [75]:

Special Iterable objects

In [76]:

2 I
0 Hi
4 Prashant
3 am

0 Hi
2 I
3 am
4 Prashant

0
1
2
3
4

a
b
c
d
e

for i in dictt:
 print(i,dictt[i])

for i in sorted(dictt):
 print(i,dictt[i])

a = 0
while(a<5):
 print(a)
 a=a+1

for a in 'abcde':
 print(a)

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 16 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [77]:

There is no do-while loop in python

3. Break, continue and pass statements

1. Break statement is used to move out of the loop.
2. Continue statement is used to stop the current iteration and move forward with the next

iteration.
3. Pass statement can be used to write a placeholder definition of a loop.

For your understanding try to explain the code in the following two cells.

In [141]:

In [142]:

Hi
how
are
you

0
1
2
3

0
1
2
4

for i in ['Hi','how','are','you']:
 print(i)

a = 0
while(a<5):
 print(a)
 if a>2:
 break
 a = a+1

for i in range(5):
 if i == 3:
 continue
 print(i)

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 17 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [143]:

In [144]:

2.3 Conditional expression

These are expressions for checking conditions

== statement

In [145]:

'in' statement

In [146]:

'is' statement

In [147]:

 Input In [143]
 for i in range(10):
 ^
IndentationError: expected an indented block

Out[145]: False

Out[146]: True

Out[147]: True

for i in range(10):

for i in range(10):
 pass

a = 1;b = 2
a == b

c = [1,2,3]
a in c

a = 1
b = 1
a == b

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 18 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [148]:

In [149]:

>=, != statements

In [150]:

Checking not equal to

In [108]:

3 Functions
For defining functions we use the following syntax. def is the keyword used to define
functions in python. Here summation is the function name and `a' and 'b' are parameters.
Return is a keyword used to return a value to the calling program

In [151]:

Now passing 1 and 2 as parameters computes the sum of the two numbers

In [152]:

Out[148]: False

Out[149]: True

Out[150]: True

Out[108]: True

Out[152]: 3

a = [1,12,3]
d = [1,12,3]
a is d

a = [1,12,3]
d = a
a is d

a = 10
b= 5
a>=b

a!=b

def summation(a,b): ## summation is the function name
 summ = a+b
 return summ ## return statement is optional

summation(1,2)

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 19 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

Based on the definition of the function, it always requires two parameters (denoted by a and
b in the definition). So calling a function without any parameters would produce an error.

In [153]:

We can have a definition of function as follows where we can assign default values of 10 and
20 to a and b so that no error is produced when no parameter is passed.

In [154]:

In [155]:

In [156]:

3.1 Lambda functions

A lambda function is a small anonymous function. A lambda function can take any number
of arguments, but can only have one expression. For example following is a lambda function
to add 10 to a number

In [167]:

TypeError Traceback (most recent call
last)
Input In [153], in <cell line: 1>()
----> 1 summation()

TypeError: summation() missing 2 required positional arguments: 'a' a
nd 'b'

Out[154]: function

3
30

20

summation()

type(summation)

def summation_1(a=10,b=20): ## providing default parameters
 summ = a+b
 return summ

print(summation_1(1,2))
print(summation_1()) ## when no parameters passed it just assumes a and b as 10 and 20

x = lambda a: a + 10
print(x(10))

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 20 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

Two inputs at ones

In [169]:

3.2 Be careful while changing values in the
function

Value of variable changed inside a function are not reflected outside

In [117]:

In [118]:

However, if a list is changed it retains the change outside the function as well. So you should
be careful while changing values inside a function.

In [119]:

In [120]:

8

Original value of a: 10
Value of a after change inside the function is: 20
However value of a outside the function is still: 10

Original list is: [-1, -2, -3]
printing the list after changing it within the function [-1, -2, -3,
1]
Printing the list after function call is finished: [-1, -2, -3, 1]

y = lambda a,b: a**b
print(y(2,3))

def change_values(a):
 a = a*2
 print('Value of a after change inside the function is: '+str(a))

a = 10 ## original value of a
print('Original value of a: '+str(a))
change_values(a) ## a function changing the value of 'a' internally
print('However value of a outside the function is still: '+str(a)) ## You will see still the value is unchanges

def changelist(l):
 l.append(1)
 print('printing the list after changing it within the function '+str

l = [-1,-2,-3]
print('Original list is: '+str(l))
changelist(l)
print('Printing the list after function call is finished: '+str(l)) ## modified

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 21 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

3.3 Global variable

Variable defined outside the function is accessible from inside.

In [157]:

3.4 Variable number of parameters

If we want to define a function which takes variable number of parameters. For example 1
parameter or 2 or even more, we use the following syntax. The following function gives the
product of numbers passed as an argument.

In [158]:

In [159]:

In [160]:

In []:

Now if you want to have a function definition which can handle variable number of
arguments both as usual arguments and as key value pairs, use the following following
syntax

20

Out[159]: 2

Out[160]: 40

a = 10 ## Global variable
def add_num(b):
 b = b+a ## a is still accessible inside.
 print(b)
add_num(10)

def mult(*data):
 prod = 1
 for j in data:
 prod = prod*j
 return prod

mult(2) ## There is just one number so product will return the number itself

mult(2,2,10) ## Will produce product of 2 and 2

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 22 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [161]:

In [162]:

In [163]:

3.5 Returning multiple things

You can return multiple things from a function if required

In [164]:

In []:

In [165]:

Toni
age 30
birth_place London

Toni
Sam
age1 30
birth_place1 London
age2 30
birth_place2 Sydney

Out[165]: (40.8, 22.4)

def myfunc(*args, **kwargs):
 for a in args:
 print(a)
 for x in kwargs:
 print(x,kwargs[x])

kwargs here handle the key value pairs

myfunc('Toni',age=30,birth_place='London')

myfunc('Toni','Sam',age1=30,birth_place1='London',age2=30,birth_place2

def mult_sum(*data):
 prod = 1
 for j in data:
 prod = prod*j

 summ = 0
 for j in data:
 summ = summ+j
 return prod,summ ## can return many things together

mult_sum(2,20.4) # 2*20.4 = 40.8 and 2 + 20.4 is 22.4

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 23 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [166]:

4 Input and Output in Python
Following code creates a file MyFile.txt in the same folder as this notebook. 'w' mode here
indicates it is opened for writing new stuff. Other available options are explained in the
lecture 2 slides

Write stuff
In [170]:

Now writing numbers 0 to 9 to this text file

In [171]:

Read stuff
In [174]:

Another way for reading stuff from this file

Out[166]: ((1, 1), (40, 22))

0
1
2
3
4
5
6
7
8
9

mult_sum(1),mult_sum(2,20)

file1 = open("MyFile.txt","w")

for j in range(10):
 file1.write(str(j)+'\n') ## \n enables to write each number in a new line
 #file1.write(str(j))
file1.close()

with open("MyFile.txt") as f:
 content = f.readlines()
 for j in content:
 print(j[:-1])

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 24 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [176]:

Append stuff
'a' mode denotes append. using this we can append more content into the file

In [177]:

Finally printing full contents of the file

0
1
2
3
4
5
6
7
8
9

file1 = open("MyFile.txt","r")
content = file1.readlines()
for j in content:
 print(j[:-1])
file1.close()

file1 = open("MyFile.txt","a")
for j in range(10,20):
 file1.write(str(j)+'\n')
 #file1.write(str(j))
file1.close()

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 25 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [178]:

Error and Exception Handling
Usually if some error occurs while execution, the program stops right there

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

file1 = open("MyFile.txt","r")
content = file1.readlines()
for j in content:
 print(j[:-1])

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 26 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [179]:

However we can define an exception where a program uses 'try' and 'except' clause like
this. Here in the try statement the program is trying to add integers with a string 'sam' so it
will produce an error. However, the program wont stop and just execute the except clause
instead. More details are in lecture 2 slides

In [180]:

Here we will try to convert a string 's' to an integer, since that would usually produce an
error. Here the prgram will not stop because of the error and will execute the except clause.

0

TypeError Traceback (most recent call
last)
Input In [179], in <cell line: 1>()
 1 for i in range(10):
 2 print(i)
----> 3 print(i+'sam')

TypeError: unsupported operand type(s) for +: 'int' and 'str'

sorry
sorry
sorry
sorry
sorry
sorry
sorry
sorry
sorry
sorry

for i in range(10):
 print(i)
 print(i+'sam')

for i in range(10):
 try:
 print(i+'sam')
 except:
 print('sorry')

9/7/22, 3:42 PM2_Python Basics - Jupyter Notebook

Page 27 of 27http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

In [181]:

There are different types of exceptions (error classes) in python. Please look at the slide for
more details

In [188]:

In []:

In []:

In []:

In []:

Check the data type

Check the datatype

a = 's'
try:
 print(int(a))
except:
 print('Check the data type')

a = 'a'
try:
 print(int(a))
except ValueError:
 print('Check the datatype')

