2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [135]:

In [1]:

Out[1]:

In [3]:

Out[3]:

MA 506 Probability and Statistical
Inference

Lecture 2: Python basics

1 Python data types

This notebook discusses the various data types available by default in Python. Additional
data types like array and dataframes are possible from additional packages like Numpy and
Pandas etc.

1.1: String data types

String is defined in double or single qoutes in python

s = 'Hello World'
print(f'Variable s has value: {s}')
print(f'Type of s is: {type(s)}') ## type(s) gives the class to whict

Variable s has value: Hello World
Type of s is: <class 'str's

s = 'This is a string'
S

'This is a string'

s = "This is a string"
S

'This is a string'

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 1 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [4]: s = '"Albert's'
S
s = '"Albert's'
SyntaxError: invalid syntax
In [5]: = "Albert's"

S
S

OQut[5]: "Albert's"

In [6]: sl = 'This is'
s2 = ' Wednesday'
s1+s?2

Out[6]: 'This is Wednesday'

In [9]: s1
Out[9]: 'This is'

In []:
In []:

print function expects string as arguments. print(‘Variable s has value: '+s) basically
concatenates two strings using the + operator and prints the resultant string. For example

In [136]: 'this'+' '+'is'

Out[136]: 'this is"
Same example with double quotes

In [137]: s = "Hello World"
print(f'Variable s has value: {s}')
print(f'Type of s is: {type(s)}')

Variable s has value: Hello World
Type of s is: <class 'str's

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 2 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

Single and double quotes

Suppose we want to print the string: Sam's car

Then double quotes is required to define this string so that python is able to differentiate
between outer quotes and ' in Sam's car. Hence following would give an error

In [138]: s = 'Sam's car'
print(s)

aN

invalid syntax

This is the correct way to do it.

In [139]: s = "Sam's car"
print(s)

Sam's car

One more example

In [140]: print('"Hi"")

IIHiII

In []:

1.2: Numerical Types
Here we show how to define different kind of numerical data types
In [13]: a = 1.
(

Out[13]: float

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 3 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM
In [14]: b = 1.
type(

Out[14]: float

In [15]: type(a+b)
Qut[15]: float

In [16]: al = float(a)
print(al)

1.0

Casting float as integer removes the decimal part

In [16]: a = 2.7
b = int(a)
b

Qut[16]: 2

In [17]: a = 2.7
b = round(a)
b

Out[17]1: 3

In []:

We can also do complex data types

In [18]: c = complex(2+1.1j)
type(c)

Outl18]: complex
Separating the real and imaginary components

In [21]: print(f'The real part is: {c.real}"')
print(f'The imaginary part is: {c.imag}')

The real part is: 2.0
The imaginary part is: 1.1

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 4 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

1.3: Sequence Types

Defining data objects in python which are structured as a collection and have the notion of
indexing

In [19]: a = [112;3;4]
type(a)
Out[19]: 1list

In []:
Many other operations like appending is possible for the list object
In [20]: a.append(5)
a
Qutfl20]: [1, 2, 3, 4, 5]
In [21]: a.append('Tim")
a
Outl21]: [1, 2, 3, 4, 5, 'Tim']
In [22]: a.append([1,21)
a

Out(22]: [1, 2, 3, 4, 5, 'Tim', [1, 211

In [24]: al6][0]
Out[24]: 1

In [26]: a
Out[26]: [1, 2, 3, 4, 5, 'Tim', [1, 2]1]

In [27]: a.remove(2)
a

Qutf(27]: [1, 3, 4, 5, 'Tim', [1, 2]]

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 5 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [28]: a
Out[28]: [1, 3, 4, 5, 'Tim', [1, 2]]

In [30]: al-2]
Qut[30]: 'Tim'

For accessing elements in the list:

1. 0 index denotes the first element in the list. Indexing in python always starts from O
(unless specified otherwise)

2. -1is the index of the last element, -2 is the index of the second last element and it goes
like that from the back

In [28]: print(al@],al2],al-1],al-2])
1455

Like list, we also have a data object called as tuple. It uses () instead of [] (as in list)

In [29]: b = (1,2,3)
type(b)

Out[29]: tuple

Re-assigning elements in the list and tuple object.

With list it works fine when we try to assign the element at index 0 to 9. Right now it is 1 (for
list a)

In [31]: a = [1, 3, 4, 5, 5]

a
a
Qut[31]: [1, 3, 4, 5, 5]

In [31]: al@] =9
a

Qut[31]: [9, 3, 4, 5, 5]

However, tuple is an immutable object, so reassigning values is not possible with the tuple
object

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 6 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [34]: b = (1, 3, 4, 5, 5)

b[o] =9
b
TypeError Traceback (most recent call
last)
Input , in ()

1b=(1p3l4;515)

b[o] =9
3b

TypeError: 'tuple' object does not support item assignment

In [35]: = list(b)

C
C
Qut([35]: [1, 3, 4, 5, 5]

In [36]: range(10)
Out[36]: range(0, 10)

Using range function to generate the sequence

In [33]: list(range(10))
Out(33]: [e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Testing various ways of generating a list object. For better understanding, try to think why
these commands lead to the following output

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 7 of 27

2_Python Basics - Jupyter Notebook

In [34]:

In [37]:
Out[37]:

In [38]:
Out[38]:

In [39]:
Out[39]:

In []:

In [35]:

Out[35]:

cl = list(range(10));print(cl)

c2 = list(range(0,10));print(c2)

c3 = list(range(1,10));print(c3)

c4 = list(range(10,20));print(c4)

c5 = list(range(10,5));print(c5)

c6 = list(range(-2, 10)) print(c6)

c7 = list(range(-2,10))[2:10];print(c7)
c8 = list(range(-2,10)) [:-10];print(c8)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]

(1, 2, 3, 4, 5, 6, 7, 8, 9]

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

[]

[-2, -1, o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7]

[-2, -1]

list(range(-2,10))

[-2, -1, o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

list(range(-2,10)) [2:4]
[0, 1]

list(range(-2,10)) [:-5]
[_21 _1; 0; 11 2! 3; 4]

9/7/22, 3:42 PM

Another way of generating a list using range and using a for loop to iterate over the range

object

d = [i for i in range(2,10)]
d

(2, 3, 4, 5, 6, 7, 8, 9]

For example we can use this method to compute a list of log of number from 1 to 9. Here |

am using the numpy package as numpy includes the log functionality

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

Page 8 of 27

2_Python Basics - Jupyter Notebook

In [36]:

Out[36]:

In []:

In [42]:

Out[42]:

In [44]:

import numpy as np
d = [np.sin(i) for i in np.arange(1,10)]
d

[0.8414709848078965,
0.9092974268256817,
0.1411200080598672,
-0.7568024953079282,
-0.9589242746631385,
-0.27941549819892586,
0.6569865987187891,
0.9893582466233818,
0.4121184852417566]

1.4: Mapping type

9/7/22, 3:42 PM

These kind of objects basically have a key value pair. For example the dictionary object in

python

Dict = {
'Tom':[1,2,31],
'Sam':(5,6,7),
'Eric': list(range(10)),

1:[1,2]
b
print(Dict)
a = 'listt'

{'Tom': [1, 2, 3], 'Sam': (5, 6, 7), 'Eric':

8, 91, 1: [1, 21}

({'Tom': [1, 2, 3],
'Sam': (5, 6, 7),
'Eric': [e0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
1: [1, 2]}1
"listt")

X =3
print('x")

X

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

[0; 1; 21 3; 4; 51 6; 7;

Page 9 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [45]: print(x)
3

In [46]: print(f'This is: {x}')
This is: 3

In [51]: a = 1.234555
In [48]: import numpy as np

In [52]:
print(f'This is: {np.round(a,2)}")

This is: 1.23

In [53]: Dict
Qut[53]: {'Tom': [1, 2, 3],
'Sam': (5, 6, 7),

'Eric': [eo, 1, 2, 3, 4, 5, 6, 7, 8, 9],
1: [1, 21}

Here for example "Tom' would be a key and [1,2,3] would be an object. Please note we have
used a mixture of strings and an integer as key here. This is valid for dictionaries

We cannot use indexing here because dictionary is just a collection of key value mapping
pairs

In [55]: Dict['Tom'l]
OQut[55]: [1, 2, 3]

For accessing the elements we have to index the dictionary object with a key value

In [39]: Dict['Tom'l]
Outl39]: [1, 2, 3]

In [40]: Dictl[1]
Outl40]: [1, 2]

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 10 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

1.5. Set types

Set is again a collection. Here also we dont usually have indexing. Uses {} to define

In [56]: a = {10,1,2,3,3}
type(a)

OQut[56]: set
In [57]: alo0]
Traceback (most recent call
last)

Input , in ()
alo]

'set' object is not subscriptable

Editing the set object is possible. For example adding one more integer to the object a

In [56]: a.add(11)
print(a)

{1, 2, 3, 10, 11}
We can generate some sort of ordering from a set by using other functions like

In [57]: print(sorted(a)) ## gives ascending order

[1, 2, 3, 10, 11]
frozensets are immutable analogs to sets

In [59]: b = frozenset(a)
type(b)

Out[59]: frozenset

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 11 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [60]: b
Qut(6e0]: frozenset({1, 2, 3, 10})

In []:

In [61]: b.add(10)
print(b)

AttributeError Traceback (most recent call
last)

Input , in ()
b.add(10)
2 print(b)

AttributeError: 'frozenset' object has no attribute 'add'

In [62]: = {10,1,2,3,3}

a
a
Ooutl62]: {1, 2, 3, 10}

In [63]: a = [1,2,3,4,5,4,4,4,46,3,5]
set(a)

out[e3]: {1, 2, 3, 4, 5, 46}
In []:

In [69]: bool(int('0'))
Out[69]: False

In []:

1.6. Boolean Types

This type of variable only allows two states: True or False

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 12 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [60]: = bool(-2)

a
a
Qut[60]: True

In [61]: print(bool(100),bool(10),bool(-30),bool(0))

True True True False

An int, float or complex humber set to zero returns False. An integer, float or complex
number set to any other number, positive or negative, returns True.

In [62]: print(bool(complex(10j)))
print(bool(0))
print(bool(complex(0+0j)))

True
False
False

In [63]: print(str(1>3)+', '+str(1<3)+', '+str(1==3))

False, True, False

In []:

2. Control Flow

Here we will discuss ways to reorder the the default execution ordering

2.1 Conditional Statements

In [72]: if 5<6:
print('You are good in math')

You are good in math

In [73]: if 5>6:
print('You are good in math')

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 13 of 27

2_Python Basics - Jupyter Notebook

In [74]:

In [75]:

In [79]:

In [78]:

In [72]:

if 5>6:
print('You are good in math')
else:

print('Sorry you need to improve')

Sorry you need to improve

if 5>6:
print('You are good in math')
elif 0<1:

print('You are good but need to improve')

else:
print('You need to improve')

You are good but need to improve

2.2 Loops

1. For loops

for i in range(10,1,-2):
print(i)

N B~O OO

for j in [1,2,3]:

print(j)

1

2

3

dictt = {
2:'1",
Q:'Hi',
4:'Prashant',
3:'am’',

b

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

9/7/22, 3:42 PM

Page 14 of 27

2_Python Basics - Jupyter Notebook

In [73]:

In [74]:

In []:

In [75]:

In [76]:

for 1 in dictt:
print(i,dictt[il])

rashant

whr~onN
O T H
=

Q
3

for i in sorted(dictt):
print(i,dictt[il])

1

3

0 H
2 I
3 a
4 P

rashant

2. While loop

a=2=0

while(a<5):
print(a)
a=a+l

0

1

2

3

4

Special Iterable objects

for a in 'abcde':
print(a)

D Q0O T

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

9/7/22, 3:42 PM

Page 15 of 27

2_Python Basics - Jupyter Notebook

In [77]:

In [141]:

In [142]:

for i in ['Hi', 'how', 'are','you'l]:
print(i)

Hi

how

are
you

There is no do-while loop in python

3. Break, continue and pass statements

1. Break statement is used to move out of the loop.

9/7/22, 3:42 PM

2. Continue statement is used to stop the current iteration and move forward with the next

iteration.

3. Pass statement can be used to write a placeholder definition of a loop.

For your understanding try to explain the code in the following two cells.

a==a0

while(a<5):
print(a)
if a>2:

break

a = a+l

0

1

2

3

for i in range(5):
if i ==
continue
print(i)

ANRFPO

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

Page 16 of 27

2_Python Basics - Jupyter Notebook

In [143]:

In [144]:

In [145]:

Out[145]:

In [146]:

Out[146]:

In [147]:

Out[147]:

for i in range(10):

for i in range(10):

VaN

IndentationError: expected an indented block

for i in range(10):
pass

2.3 Conditional expression

These are expressions for checking conditions

== statement
a=1;b=2

a ==

False

'in' statement

c = [1,2,3]
a in c

True

'is' statement

QoW
imnm nnu
]
=
o

True

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb

9/7/22, 3:42 PM

Page 17 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [148]: a = [1,12,3]
d = [1,12,3]
a is d

Out[148]: False

In [149]:

Out[149]: True

In [150]:

Out[150]: True
Checking not equal to

In [108]: a!=b
Out[108]: True

3 Functions

For defining functions we use the following syntax. def is the keyword used to define
functions in python. Here summation is the function name and "a' and 'b' are parameters.
Return is a keyword used to return a value to the calling program

In [151]: def summation(a,b): ## summation is the function name
summ = a+b
return summ ## return statement is optional

Now passing 1 and 2 as parameters computes the sum of the two numbers

In [152]: summation(1,2)
Out[152]: 3

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 18 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [153]:

In [154]:
Out[154]:

In [155]:

In [156]:

In [167]:

Based on the definition of the function, it always requires two parameters (denoted by a and
b in the definition). So calling a function without any parameters would produce an error.

summation()

Traceback (most recent call

last)
Input , in ()
summation()
summation() missing 2 required positional arguments: 'a' a
nd 'b'

We can have a definition of function as follows where we can assign default values of 10 and
20 to a and b so that no error is produced when no parameter is passed.

type(summation)
function
def summation_1(a=10,b=20): ## providing default parameters

summ = a+b
return summ

print(summation_1(1,2))
print(summation_1()) ## when no parameters passed it just assumes a ar

3
30

3.1 Lambda functions

A lambda function is a small anonymous function. A lambda function can take any number
of arguments, but can only have one expression. For example following is a lambda function
to add 10 to a number

x = lambda a: a + 10
print(x(10))

20

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 19 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

Two inputs at ones

In [169]: y = lambda a,b: axxb
print(y(2,3))

8

3.2 Be careful while changing values in the
function

Value of variable changed inside a function are not reflected outside

In [117]: def change_values(a):
a = ax2
print('Value of a after change inside the function is: '+str(a))

In [118]: a = 10 ## original value of a
print('Original value of a: '+str(a))
change_values(a) ## a function changing the value of 'a' internally
print('However value of a outside the function is still: '+str(a)) ##

Original value of a: 10
Value of a after change inside the function is: 20
However value of a outside the function is still: 10

However, if a list is changed it retains the change outside the function as well. So you should
be careful while changing values inside a function.

In [119]: def changelist(1l):
1.append(1)
print('printing the list after changing it within the function '+¢

In [120]: 1 = [-1,-2,-3]
print('Original list is: '+4str(1))
changelist(1)
print('Printing the list after function call is finished: '+str(l)) 4

Original list is: [-1, -2, -3]

printing the list after changing it within the function [-1, -2, -3,
1]

Printing the list after function call is finished: [-1, -2, -3, 1]

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 20 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

3.3 Global variable

Variable defined outside the function is accessible from inside.

In [157]: a = 10 ## Global variable
def add_num(b):
b =Db+ta ## a is still accessible inside.
print(b)
add_num(10)

20

3.4 Variable number of parameters

If we want to define a function which takes variable number of parameters. For example 1
parameter or 2 or even more, we use the following syntax. The following function gives the
product of numbers passed as an argument.

In [158]: def mult(xdata):
prod = 1
for j in data:
prod = prodxj
return prod
In [159]: mult(2) ## There is just one number so product will return the number

Qut[159]: 2

In [160]: mult(2,2,10) ## Will produce product of 2 and 2
Out[160]: 40

In []:

Now if you want to have a function definition which can handle variable number of
arguments both as usual arguments and as key value pairs, use the following following
syntax

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 21 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [161]: def myfunc(xargs, *xkwargs):
for a in args:
print(a)
for x in kwargs:
print(x, kwargs[x])

kwargs here handle the key value pairs

In [162]: myfunc('Toni',age=30,birth_place='London")

Toni
age 30
birth_place London

In [163]: myfunc('Toni', 'Sam',agel=30,birth_placel='London',age2=30,birth_placez

Toni

Sam

agel 30
birth_placel London
age2 30
birth_place2 Sydney

3.5 Returning multiple things
You can return multiple things from a function if required

In [164]: def mult_sum(xdata):
prod = 1
for j in data:
prod = prodxj

summ = 0
for j in data:

summ = summ+]j
return prod,summ ## can return many things together

In []:

In [165]: mult_sum(2,20.4) # 2%20.4 = 40.8 and 2 + 20.4 is 22.4
Out[165]: (40.8, 22.4)

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 22 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [166]: mult_sum(1),mult_sum(2,20)
Out[166]: ((1, 1), (40, 22))

4 Input and Output in Python

Following code creates a file MyFile.txt in the same folder as this notebook. 'w' mode here
indicates it is opened for writing new stuff. Other available options are explained in the
lecture 2 slides

Write stuff

In [170]: filel = open("MyFile.txt","w")
Now writing numbers 0 to 9 to this text file

In [171]: for j in range(10):
filel.write(str(j)+'\n') ## \n enables to write each number in a
#filel.write(str(j))
filel.close()

Read stuff

In [174]: with open("MyFile.txt") as f:
content = f.readlines()
for j in content:

print(j[:-1])

OCooNOUTR,WNEOS

Another way for reading stuff from this file

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 23 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [176]: filel = open("MyFile.txt","r")
content = filel.readlines()
for j in content:

print(j[:-1])
filel.close()

OCoo~NOUTA,WNREROS

Append stuff

‘a' mode denotes append. using this we can append more content into the file

In [177]: filel = open("MyFile.txt","a")
for j in range(10,20):
filel.write(str(j)+'\n")
#filel.write(str(j))
filel.close()

Finally printing full contents of the file

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 24 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [178]: filel = open("MyFile.txt","r")
content = filel.readlines()
for j in content:

print(jl:-1])

Ooo~NOOULTE,WNEOS

Error and Exception Handling

Usually if some error occurs while execution, the program stops right there

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 25 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [179]: for i in range(10):
print(i)
print(i+'sam')

0
Traceback (most recent call
last)
Input , in ()
1 for i in range(10):
2 print(i)

print(i+'sam")

unsupported operand type(s) for +: 'int' and 'str'

However we can define an exception where a program uses 'try' and 'except' clause like
this. Here in the try statement the program is trying to add integers with a string 'sam’ so it
will produce an error. However, the program wont stop and just execute the except clause
instead. More details are in lecture 2 slides

In [180]: for i in range(10):
try:
print(i+'sam')
except:
print('sorry')

sorry
sorry
sorry
sorry
sorry
sorry
sorry
sorry
sorry
sorry

Here we will try to convert a string 's' to an integer, since that would usually produce an
error. Here the prgram will not stop because of the error and will execute the except clause.

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 26 of 27

2_Python Basics - Jupyter Notebook 9/7/22, 3:42 PM

In [181]: a = 's'
try:
print(int(a))
except:
print('Check the data type')

Check the data type

There are different types of exceptions (error classes) in python. Please look at the slide for
more details

In [188]: a = 'a'
try:
print(int(a))
except ValueError:
print('Check the datatype')

Check the datatype
In []:
In []:
In []:

In []:

http://localhost:8888/notebooks/Fall_2022/MA506/2_Python_basics/2_Python%20Basics.ipynb Page 27 of 27

